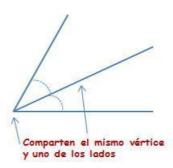

TEMA 9: CUERPOS GEOMÉTRICOS. ÁREAS Y VOLÚMENES.

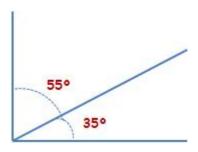
TAREA PARA REALIZAR DEL 13 AL 27 DE ABRIL.

DEBES COPIAR LOS APUNTES Y REALIZAR LOS EJERCICIOS DE ESTE DOCUMENTO EN EL CUADERNO. UNA VEZ TERMINADOS SE LO ENVIARAS A LA PROFESORA, HASTA EL 27 DE ABRIL, INCLUIDO A TRAVÉS DEL CORREO ELÉCTRONICO PARA QUE TE LOS CORRIJA.

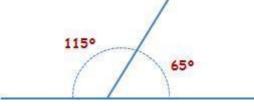
1. Ángulos.

El ángulo viene delimitado por un vértice y dos lados.



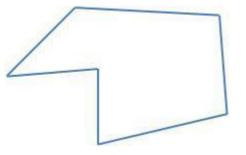

TIPOS DE ÁNGULOS

RELACIÓN ENTRE DOS ÁNGULOS

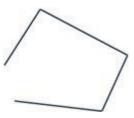

A. Ángulos consecutivos: son aquellos que tienen en común el vértice y uno de los lados.

B. Ángulos complementarios: son dos ángulos consecutivos que suman 90 grados, es decir, un ángulo recto.

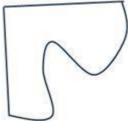
C. Ángulos suplementarios: son dos ángulos consecutivos que suman 180 grados, es decir, un ángulo llano.



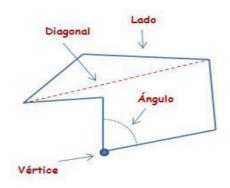
REALIZAR LAS ACTIVIDADES DE LA 1 A LA 4 QUE APARECEN AL FINAL DEL DOCUMENTO


2. Polígonos

Un polígono está formado por una línea poligonal cerrada y la superficie interior.


Todos sus lados tienen que ser líneas rectas.

Las siguientes figuras no son polígonos:



No es una figura cerrada

Sus lados no son líneas rectas.

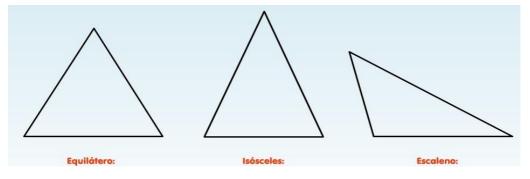
En un polígono se pueden distinguir las siguientes partes:

Los polígonos que tienen todos sus lados y ángulos iguales se llaman **polígonos regulares**. En caso contrario los polígonos son **irregulares**.

Según el número de lados los polígonos se pueden clasificar en:

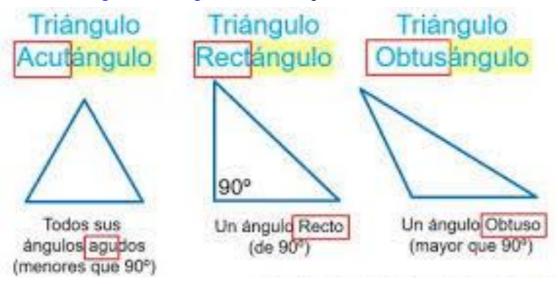
N.º de lados	Nombre	Regular	Irregular
3	Triángulo		
4	Cuadrilátero		
5	Pentágono		
6	Hexágono		
8	Octógono		\bigcirc
9	Eneágono		
10	Decágono		\Diamond
11	Endecágono		0
12	Dodecágono		

REALIZAR LA ACTIVIDAD 5 QUE APARECE AL FINAL DEL DOCUMENTO

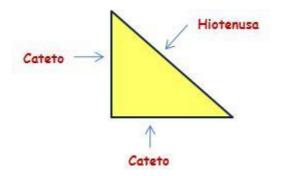

Podéis visualizar el siguiente video para aclarar las ideas:

https://www.youtube.com/watch?v=yZv-9tUzHI4
https://www.youtube.com/watch?v=VkxuoSsNnqQ

2.1. Triángulos

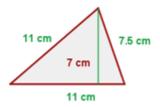

Los triángulos se pueden clasificar según sus lados:

- Triángulo equilátero: todos sus lados son iguales.
- Triángulo isósceles: tiene 2 lados iguales.
- Triángulo escaleno: todos sus lados son diferentes.


Los triángulos se pueden clasificar según sus ángulos:

- Triángulo acutángulo: todos sus ángulos son agudos.
- Triángulo rectángulo: Tiene un ángulo recto.
- Triángulo obtusángulo: Tiene un ángulo obtuso.

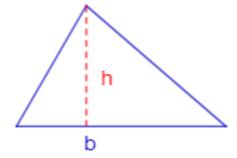
En el triángulo rectángulo podemos distinguir:


- → Los lados que forman el ángulo recto se denominan catetos.
- → El lado opuesto al ángulo recto se denomina hipotenusa.

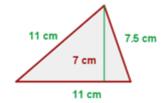
Siempre se cumple la siguiente propiedad: LA SUMA DE SUS TRES ÁNGULOS SIEMPRE SUMA 180 GRADOS.

El perímetro de un polígono es igual a la suma de las longitudes de sus lados.

Ejemplo:



El perímetro del triángulo anterior es:

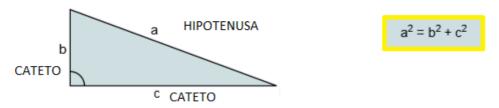

$$P = 11 + 11 + 7,5 = 29,5 cm$$

El área de un polígono es la medida de la región o superficie encerrada por un polígono.

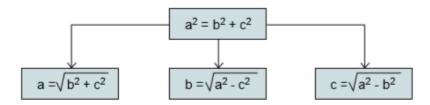
$$A = \frac{b \cdot h}{2}$$

Ejemplo:

$$A = \frac{11 \cdot 7}{2} = 38,5 \ cm^2$$

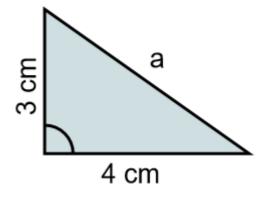

REALIZAR LAS ACTIVIDADES DE LA 6 A LA 17 QUE APARECEN AL FINAL DEL DOCUMENTO

Podéis visualizar el siguiente video para aclarar las ideas:


https://www.youtube.com/watch?v=wYNvY_bOGdc https://www.youtube.com/watch?v=j_TP_kyJqvw

2.2. Teorema de Pitágoras

En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.



De esta fórmula se obtienen las siguientes:

Ejemplo:

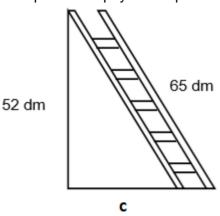
Calcula la hipotenusa del siguiente triángulo:

$$a^{2} = b^{2} + c^{2}$$

$$a^{2} = 3^{2} + 4^{2}$$

$$a^{2} = 9 + 16$$

$$a^{2} = 25$$


$$a = \sqrt{25}$$

$$a = 5$$

Solución: La hipotenusa mide 5 cm.

Ejemplo

¿A qué distancia de la pared habrá que colocar el pie de esta misma escalera para que la parte superior se apoye en la pared a una altura de 52 dm?

$$c = \sqrt{a^{2} - b^{2}}$$

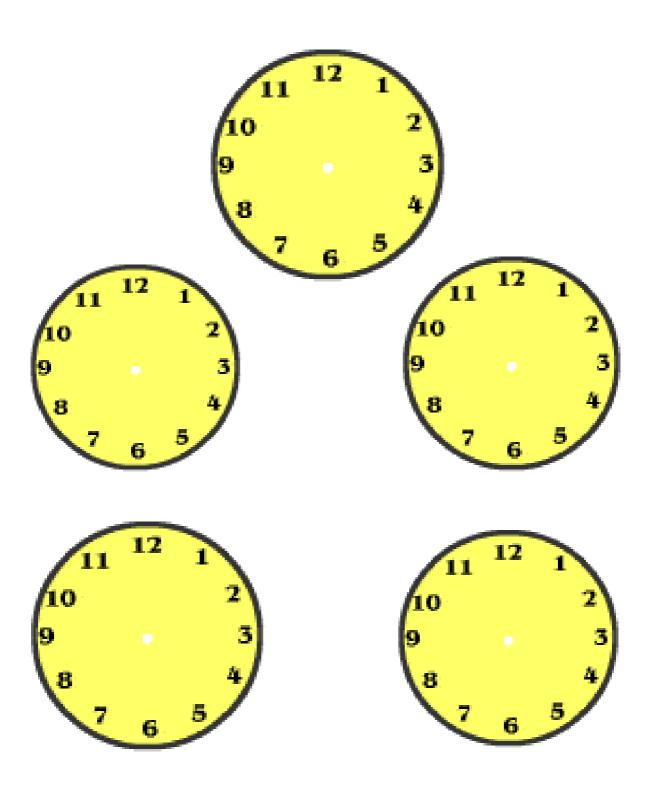
$$c = \sqrt{65^{2} - 52^{2}}$$

$$c = \sqrt{4225 - 2704}$$

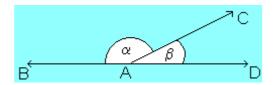
$$c = \sqrt{1521}$$

$$c = 39$$

Solución: Hay que colocarla a 39 dm de la pared.

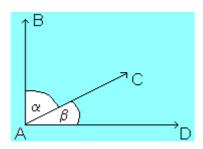

REALIZAR LAS ACTIVIDADES DE LA 18 A LA 20 QUE APARECEN AL FINAL DEL DOCUMENTO

Podéis visualizar los siguientes videos para aclarar las ideas:


https://www.youtube.com/watch?v=w6nh99v3r4A https://www.youtube.com/watch?v=R2ODVuqD-6A

ACTIVIDADES GEOMETRÍA.

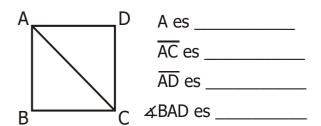
1. Dibuja en los siguientes relojes: un ángulo agudo, uno obtuso, uno llano, uno recto, y uno completo.

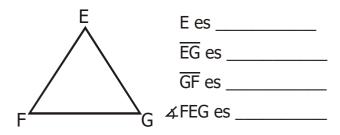

2. ¿Qué tipo de ángulos forman los siguientes?

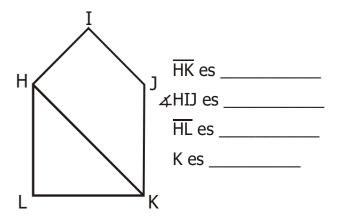
¿Cuánto suman siempre los ángulos suplementarios?

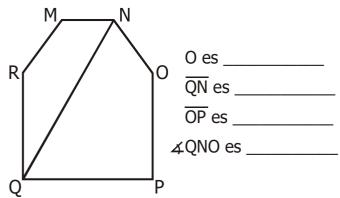
Calcula cuánto mide el ángulo que falta, sabiendo que uno de ellos mide 150

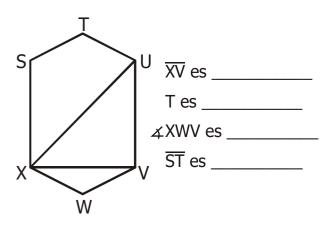
3. ¿Qué tipo de ángulos forman los siguientes?

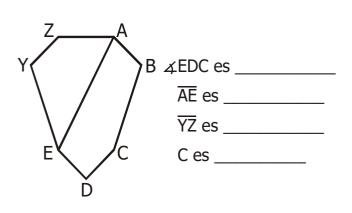

¿Cuánto suman siempre los ángulos complementarios? _____

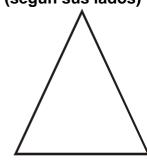

Calcula cuanto mide el complementario del ángulo de 55º

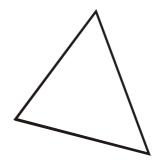

4. Completa la siguiente tabla:

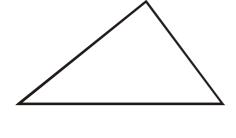

Ángulo	Complementario	Suplementario
35°		
67°		
25°		
50°		
45°		
10°		
73°		
80°		

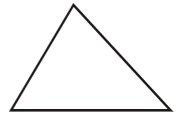

5. ¿Qué elemento es? Escribe de qué elemento se trata según lo indicado en cada polígono.



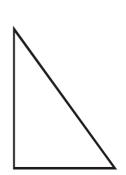


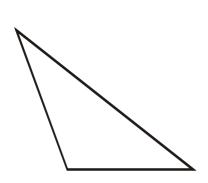




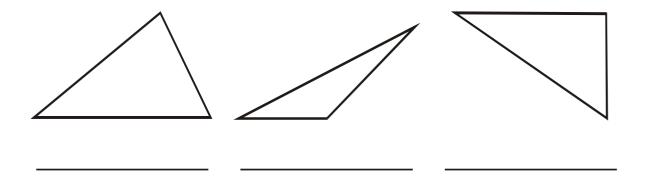

6. Mide los lados de cada triángulo y escribe sus nombres.

(según sus lados)

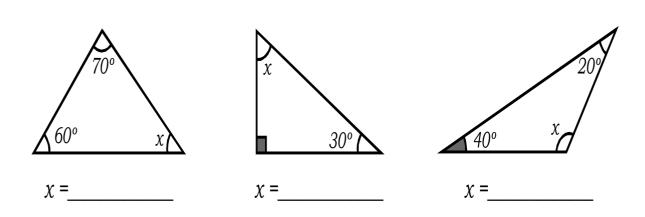

7. Según la medida de sus ángulos pueden ser: (según sus ángulos)

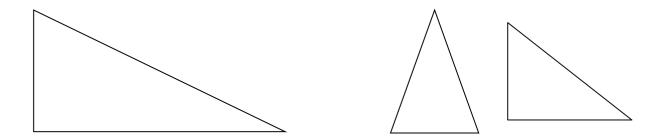

Triángulo _____ sus tres ángulos son agudos.

Triángulo _____tiene un ángulo obtuso.

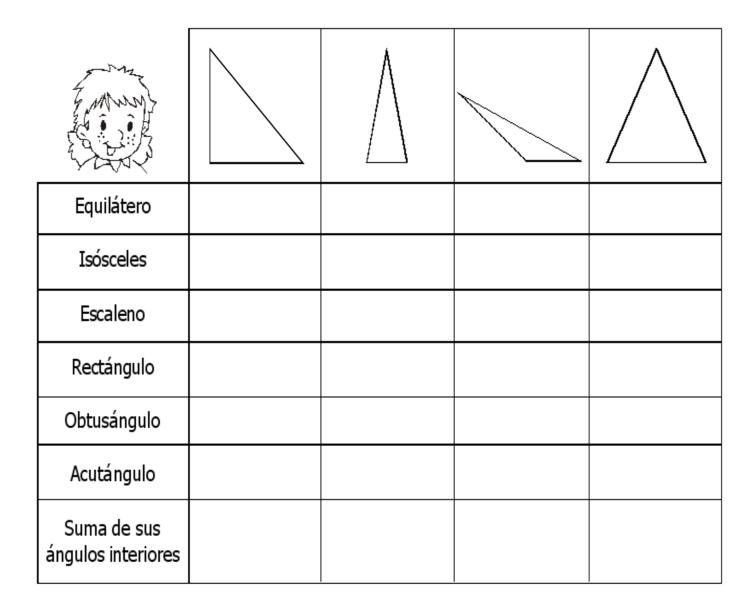

Triángulo _____ tiene un ángulo recto.

8. Mide los ángulos de cada triángulo y escribe a qué clase de triángulo corresponde.

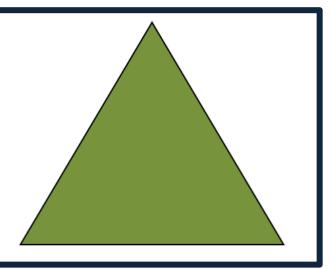


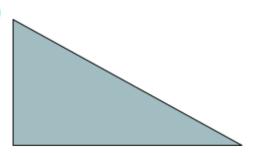


9. ¿Cuánto mide "x" en?

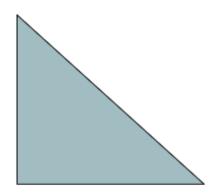


- El triángulo ABC es equilátero. Si uno de sus lados mide 5 cm, ¿cuánto miden los otros dos lados y cuánto mide cada uno de sus ángulos?
- El primer lado de un triángulo mide 10 m, el segundo lado mide 15 m y por último el tercer lado mide 20 m. ¿Cómo se llama el triángulo?
 - 10. Escribe el nombre de los siguientes triángulos atendiendo a sus lados y a sus ángulos.


- 11. Dibuja un triángulo equilátero de 5 cm de lado.
- 12. Marca los casilleros correspondientes a la clasificación de cada triángulo, según la medida de sus lados y ángulos.

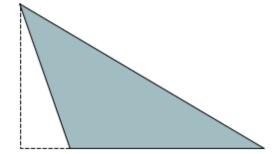

13. Calcula el área de los siguientes triángulos:

Base: 18 cm Altura: 7 cm


$$A = \frac{18 \cdot 7}{2} = 63cm^2$$

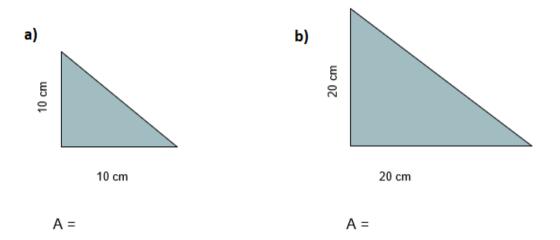
a)


b)

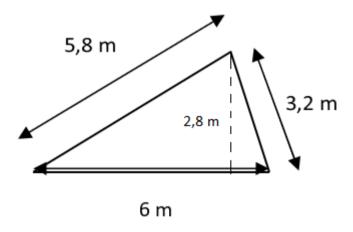

Base: 10 cm Altura: 3 cm

Base: 12 cm Altura: 12 cm

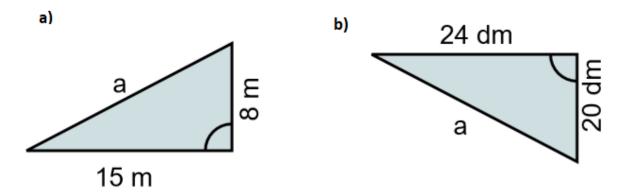
c)


d)

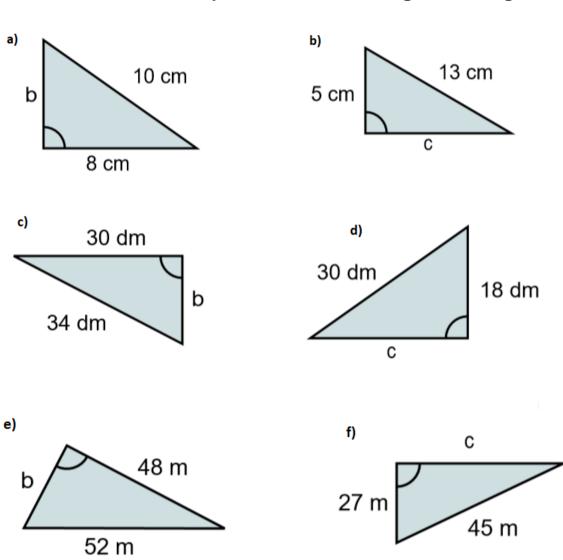
Base: 14 cm Altura: 8 cm

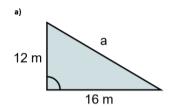

Base: 18 cm Altura: 5 cm

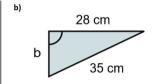
14. Calcula el área de los siguientes triángulos rectángulos isósceles.

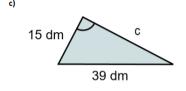


¿Qué relación existe entre las áreas de estos dos triángulos?


15. Calcula el perímetro y el área de la siguiente figura:


- 16. Calcula el perímetro y el área de un triángulo equilátero de base 2,8 cm y altura 2,5 cm.
- 17. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m.
- 18. Calcula la hipotenusa en los siguientes triángulos rectángulos:




19. Calcula el cateto que falta en cada triángulo rectángulo:

20. Calcula en cada triángulo rectángulo el lado que falta:

